Critères de choix de l'utilisation du sévoflurane en anesthésie des animaux utilisés à des fins scientifiques

Ismael DAHER, PhD Responsable commercial, TEMSEGA

Équipements pour la recherche scientifique et préclinique

One of the most stringent ethical and welfare standards worldwide

Became formally applied across the EU on January 1st 2013

DIRECTIVE 2010/63/EU OF THE EUROPE PARLIAMENT AND OF THE COUNCIL of september 2010 on the protection of animals use for scientific purposes (Text with EEA relevance)

Directive 2010/63/EU

European Union (EU) legislation "on the protection of animals used for scientific purposes"

Protects live non-human vertebrates including independently feeding larval forms and foetal forms of mammals from the last third of their normal development, and live cephalopods

Each person using an animal in an experiment must recognize when the animal is suffering, and reduce the pain

Keep away from interferences that can modify the results

The type of procedure: some only need a handling, while others must be done under artifical ventilation

Decree 87-848, 19 October 1987 in France

	Stage 1	Also known as effect, which m can feel pain
Veterinary Use Only Usage vétérinaire seulement		
RESERVUE BERSERVUE Isoflurane	Stage 2	The excitement erratic breathin dilation of the p
<complex-block></complex-block>	Stage 3	Stage III is know The muscles re a stop
Ar & Srg - 10mg Strate, logie en ids. 1.m 10 Kg. Brits ar ene 8°C- Tomulación fabricada en el Peri pola Ketabania K	Stage 4	Also known as excess of medi and in turn the

induction. Anesthesia has not yet taken neans that the animal is still conscious and

It stage, follows the loss of consciousness. Involves ng, an irregular heart rate, and nausea as well as pupils

wn as surgical anesthesia elax, breathing slows, and eye movement slows to

overdose. In this stage, the animal has received an ication. Suppresses activity in the medulla or brain stem, animal's cardiovascular and respiratory systems fail

	Behavior	Respiration	Cardiovascular Function	Response to Surgery	Depth	Eyeball Position	Pupil Size	Pupillary Light response	Muscle Tone	Reflex Response
Stage I	Disoriented	Normal, may be panting RR 20-30 bpm	HR unchanged Hypertension	Struggle	Not anesthetized	Central	Normal	Yes	Good	All present
Stage II excitatory stage	Excitement struggling vocalization	Irregular, may hold breath or hyperventilate	HR may increase, hypertension	Struggle	Not anesthetized	Central, possible nystagmus	Yes	Yes	Good	All present, may be exaggerated
Stage III, Plane 1, light anesthesia	Anesthetized	Regular RR 12-20 bpm	Pulse strong HR > 90 bpm Normal BP	May respond with movement	Light	Central or rotated, may be nystagmus	Normal	Yes	Good	Swallowing poor or absent, good others present but diminis
Stage III, Plane 2, surgical anesthesia	Anesthetized	Regular, may be shallow RR 12-16 bpm	HR > 90 bpm Increasing hypotension	HR and RR may increase	Moderate	Often rotated ventrally	Slightly dilated	Sluggish	Relaxed	Patellar, ear flick, pa relaxed and corneal may be (but diminished), ot
Stage III, Plane 3, deep anesthesia	Anesthetized	Shallow RR <12 bpm	HR 60-90 bpm CRT increased, pulse less strong, increasing hypotension	None	Deep	Usually central, may rotate ventrally	Moderately dilated	Very sluggish or absent	Greatly reduced	All reflexes diminish absent
Stage III, Plane 4	Anesthetized	Jerky	HR < 60 bpm Prolonged CRT, pale mm Significant Hypotension	None	Overdose	Central	Widely dilated	Unresponsive	Flaccid	No reflex activity
Stage IV	Moribund	Apnea	Cardiovascular collapse	None	Dying	Central	Widely dilated	Unresponsive	Flaccid	No reflex activity

Basic reflexes in rodents, their method of assessment, and significance in anesthetic monitoring

Measures of anesthetic depth in rodents under isoflurane anesthesia

ReflexRighting reflexThe animal
lost when
(standing)Skin pinch reflex
(panniculus reflex)The loose
reflex is lo
flinching).Toe pinch reflex
(pedal withdrawal
reflex)One of the
footpad is
animal do

Too lightLoss of the righting
reflex (LORR) but
muscle tone is still
present
Reflexes present
Rapid and shallow
respiratory rateMusc
Skin
Toe p
prese
Rhyth
respiratory rate

Method of assessment

The animal is gently rolled onto its back. The righting reflex is lost when the animal is unable to regain an upright posture (standing or lying down).

The loose skin over the animal's dorsal surface is pinched. This reflex is lost when the animal does not visibly respond (e.g by flinching).

One of the hind limbs is gently extended, and then the footpad is firmly pinched. The toe pinch reflex is lost when the animal does not respond by withdrawing the extended limb.

Significance

Loss of the righting reflex (LORR) is correlated with a loss of consciousness.

Loss of this response is correlated with loss of superficial pain.

Loss of this reflex is correlated with loss of deep pain.

Appro		
Light plane of anesthesia	Deep plane of anesthesia	Too deep
cle tone loose/weak pinch reflex absent pinch reflex variably ent hmic, but shallow, iratory rate	Muscle tone loose/weak Skin pinch reflex absent Toe pinch reflex absent Reduced respiratory rate, but still rhythmic	Muscle tone loose/weak Skin pinch reflex absent Toe pinch reflex absent Respiratory rate may be erratic, abdominal breathing has developed ("see-saw"breathing)

MAC : minimum alveolar concentration where 50% of animals lose a motor response to a noxious stimulus. The lower the MAC value, the lower the concentration required, ie the more potent the anesthetic.

CNS function lost	Plane of anesthesia	Statuts of CNS functions	Approximate MAC value
Loss of memory	Unable to form memories	Cerebral functions, spinal and autonomic reflexes intact	0.25
Loss of consciousness	Unable to perceive pain	Cerebral functions anesthetized; spinal and autonomic reflexes intact	0.5
Loss of motor response to a noxious stimulus	No motor response; surgical plane of anesthesia	Cerebral functions and spinal reflexes anesthetized;	1.0
Blunted autonomic reflexes	Autonomic nervous system is not responsive to physiologic	Cerebral functions, spinal ref lexes, and autonomic ref	1.5

Use of gaseous anesthesia vs injectable anesthesia

Anesthetic protocols for immobilization or imaging

Anesthetic protocols for surgical plane

Anesthetic Protocol

Ether

Highly soluble, low induction; causes irritation in the eyes, nose and airways; risk of explosion

Halothane

Rapid induction; efficacious for euthanasia; high potential for hepatotoxicity

Isoflurane

Lower solubility than halothane, but faster induction; unpleasant smell; small hepatotoxicity

Fast action and recovery low blood solubility

Few effects on the cardiovascular functions and the cerebral blood flow halothane

Easy anesthesia depth control

Enflurane

Lower potency than halothane; efficacious for euthanasia, linked to scattered convulsions; potential for hepatotoxicity

Less potent than halothane and isoflurane, as well as lower vapour pressure

Sevoflurane Metoxiflurane

Highly soluble; slow induction; potential for nephrotoxicity

Not an analgesic

Respiratory issues, pulmonary tract inflammation

Central hypothermia

Liver toxicity cited in several studies

Several factors have to be considered when choosing an anesthetic

- **The animal species, strain and eventually the animal temperament:** a well-known example is the observed shock in guinea pigs when using ether
- The animal well-being: some short procedures with little pain only require using a light anesthetic
- **The surgical procedure:** duration, light or deep surgery, imaging etc...
- **The means and experience of the person:** using an injectable anesthetic can be safer for without experience with volatile agents

The animal and user safety

	Isoflurane	Sevoflurane
Minimum alveolar concentration MAC	1.3	2.4
Blood-gas solubility	Higher	Lower, thus achieving a rapid effect in the brain
Induction and recovery	Lower	Faster
Anaesthetic depth	Good	Faster change in depth
Tolerance	Can induce irritation	Less airway irritation
Use with soda lime	X	Produces compound A
Imaging in rodents	Optimal	_
Smell	Strong and pungent	Sweet
Anesthesia side effects	Same	Same
Safety	X	Хх
Cost	+	Higher x12 at similar gas flow
Consumption	Lower	Higher because surgical anesthesia achieved at 1.5xMAC

	Blood / gas partition coefficien
Halothane	2.30
Enflurane	1.80
Isoflurane	1.41
Desflurane	0.42
Sevoflurane	0.69

BRAIN **Higher brain concentration**

Locomotor activity, daily food and water consumption and body weight progression showed no abnormalities after anaesthesia

Comparative Study > Lab Anim. 2010 Oct;44(4):329-36. doi: 10.1258/la.2010.009085.

Epub 2010 May 27.

Isoflurane and sevoflurane provide equally effective anaesthesia in laboratory mice

Nikola Cesarovic¹, Flora Nicholls, Andreas Rettich, Peter Kronen, Michael Hässig, Paulin Jirkof, Margarete Arras

Induction chamber Maintenance with nose mask (spontaneous breathing) in dorsal recumbency on the warmed mat

RED - Contraindicated with high physiological interference regarding tracer uptake and biodistribution

ORANGE

- Increased safety risk to animal with possibility of mortality
- Moderate interference with tracer uptake

GREEN - Low interference with physiological processes and expected tracer uptake

Table 1: Compatibility of various anaesthetic agents for optimal microPET/CT imaging of indicated radiotracers

		[¹⁸ F]FDG	[⁶⁸]Ga- DOTA-TATE	[⁶⁸]0 PSM
ation	Isoflurane			
Inhal	Sevoflurane			
Injectable	Ketamine/Xylazine			
	Pentobarbital			
	Propofol			
	Fentanylcitrate fluanisone / Diazepam		n/a	n/a

The Physiologic Effects of Isoflurane, Sevoflurane, and Hypothermia Used for Anesthesia in Neonatal Rats (*Rattus norvegicus*)

The differential effects of isoflurane

Economic considerations in the use of inhaled anesthetic agents

JULIE GOLEMBIEWSKI

Am J Health-Syst Pharm—Vol 67 Apr 15, 2010 Suppl 4

S9

Table 1. Estimated Cost per MAC Hour (\$) of Inhaled Anesthetic Agents ^{7,a,b}						
	Fresh Gas Flow Rate (L/min)	Isoflurane ^c	Desfluraned	Sevoflurane ^e		
	1	0.52	12.96	6.05		
	2	1.04	25.93	12.10		
	3	1.56	38.88	18.15		

^aMAC = minimum alveolar concentration.

^bAll estimated costs per MAC hour are based on a duration of 60 minutes and the following formula: Cost per MAC hour (\$) = [(Concentration)(FGF)(duration)(MW)(cost/mL)]/[(2412)(D)] where FGF is fresh gas flow rate in L/min, MW = molecular weight in g, cost per mL is in dollars based on average wholesale price, and D = density in g/mL.

'Isoflurane calculations are based on a concentration of 1.15%, molecular weight (MW) of 184.5 g, cost per mL of \$0.15, and density of 1.496 g/mL.

^dDesflurane calculations are based on a concentration of 6%, MW of 168g, cost per mL of \$0.96, and density of 1.45 g/mL.

"Sevoflurane calculations are based on a concentration of 2.05%, MW of 201g, cost per mL of \$0.90, and density of 1.51 g/mL.

Cost per MAC hour (\$) =[(Concentration)(FGF)(duration) (MW)(cost/mL)]/[(2412)(D)]

the patient is still conscious

- analgesia
- postoperative analgesic protocol
- addressed below

Analgesia is a neurological state where pain is not perceived to its full ability. Painful stimuli are still present but not perceived as pain while

It does become a factor during recovery and the smooth transition from anesthesia to

Therefore, as the animal emerges from anesthesia to being able to perceive pain, analgesia will be present and will help bridge the animal to the full efficacy of the

These effects are absent for inhalant anesthetics, and the postoperative analgesic protocol must fully address pain from the instant the animal regains consciousness

Analgesics can provide value during the surgical procedure when using inhalant anesthesia because they can decrease the amount of inhalant anesthesia, which is

Μ	ouse

	Mouse			Rat			
Agent	Dose (mg/kg)	Route	Frequency	Dose (mg/kg)	Route	Frequency	
Buprenorphine	0.05-0.1	SC	6-12 h	0.01-0.1	SC, IM	8-12 h	
Tramadol	5-40	SC, IP	ND	5-20	SC, IP	ND	
Carprofen	2-5	SC	12-24 h	2-5	SC	24 h	
Meloxicam	1-5	SC, PO	12 h	1-2	SC, PO	12-24 h	
Ketoprofen	2-5	SC	24 h	2-5	SC	24 h	
Acetaminophen	30-40	PO	ND	15	PO	ND	
Agent	200	PO	ND	200	PO	ND	

The Mouse Grimace Scale

	Not present "0"	Moderately present "1"	Obviously present "2"
Orbital tightening • Closing of the eyelid (narrowing of orbital area) • A wrinkle may be visible around the eye			
Nose bulge • Bulging on the bridge of the nose • Vertical wrinkles on the side of the nose			
Cheek bulge • Bulging of the cheeks			
Ear position • Ears rotate outwards and/or backwards, away from the face • Ears may fold to form a 'pointed' shape • Space between the ears increases			
Whisker change • Whiskers are either pulled back against the cheek, or pulled forward to 'stand on end' • Whiskers may clump together • Whiskers lose their natural 'downward' curve			

Katharina Aulehner, ¹ Cathalijn Leenaars, ² Verena Buchecker, ¹ Helen Stirling, ¹ Katharina Schönhoff, ¹ Hannah King, ¹ Christine Häger, ² Ines Koska, ^{1,†} Paulin Jirkof, ³ André Bleich, ² Marion Bankstahl, ² and Heidrun Potschka^{1,*}

Real-time application of the Rat Grimace Scale as a welfare refinement in laboratory rats

Vivian Leung, Emily Zhang & Daniel SJ Pang

The development and use of facial grimace scales for pain measurement in animals

Jeffrey S. Mogil 🌯 🖉 , Daniel S.J. Pang ^b, Gabrielle Guanaes Silva Dutra 🖁, Christine T. Chambers ^c

Grimace scale, burrowing, and nest building for the assessment of post-surgical pain in mice and rats—A systematic review

Carrier gas

The carrier gas choice: Air or O2

- Use of an air compressor and/or oxygen concentrator if no presence of an gas outlet

Possibility to mix the compressed air and the O2

Oxygen allows for a faster recovery, and prevents hypoxia during long surgeries

Oxygen can also have negative side effects and have to be carefully administred

Journal of the American Association for Laboratory Animal Science Copyright 2021 by the American Association for Laboratory Animal Science

Effects of Oxygen Supplementation on Injectable and Inhalant Anesthesia in C57BL/6 Mice

Caroline E Blevins,^{1,2} Natalie A Celeste,³ and James O Marx^{1,2,*}

Review > Curr Opin Anaesthesiol. 2012 Jun;25(3):363-70. doi: 10.1097/ACO.0b013e328352b402.

Rational use of oxygen in medical disease and anesthesia

Christian S Meyhoff¹, Anne K Staehr, Lars S Rasmussen

Affiliations + expand

PMID: 22450697 DOI: 10.1097/ACO.0b013e328352b402

The vaporizer: How does it work?

> Vaporizer specific for one gas type: isoflurane, sevoflurane etc...

Temperature and pressure defined in the chamber

- Concentration range from 0 to 5%
- Filling the vaporizer on the OFF position and with gas source OFF

First anesthesia step: Induction in a box

2L/min flow (has to be adapted depending on the box volume)

Possibility to mix the compressed air and the O2

Optimal induction in 2 min to avoid the stres longer induction, without increasing the flow can lead to the anesthesia stage 4

Observe for loss of righting reflex Leave animal in chamber for one additional

Second anesthesia step: Maintenance with a mask

A mask for each application

Maintain concentration between 1 and 3%

Animals shoud not respond to noxious stimuli: toe pinch

Respiration should be regular

Flow has to be adapted to the animal

Effects of reduction of carrier gas flow rate on sevoflurane and isoflurane consumption and costs

Satoru Tanaka, Hideaki Tsuchida, Hajime Sonoda & Akiyoshi Namiki

Results

Halving the carrier gas flow rate reduced the consumption of sevoflurane by 41.8% and that of isoflurane by 52.6%. It also reduced the total cost by 44.3% for sevoflurane and 49.2% for isoflurane.

Parameters to evaluate

General appearence

Respiratory function

Skin coloration

Hydration

Body condition scoring

Normal findings

Active, smooth fur coat

Breats not noticeable

Pink

Normal skin turgor

2.5 - 3

BC 1

Mouse is emaciated.

- Skeletal structure extremely prominent; little or no flesh cover.
- Vertebrae distinctly segmented.

BC 2

Mouse is underconditioned.

- Segmentation of vertebral column evident.
- Dorsal pelvic bones are readily palpable.

BC 3

Mouse is well-conditioned.

 Vertebrae an dorsal pelvis not prominent; palpable with slight pressure.

BC 4

Mouse is overconditioned.

- Spine is a continuous column.
- Vertebrae palpable only with firm pressure.

BC 5

Mouse is obese.

- Mouse is smooth and bulky.
- Bone structure disappears under flesh and subcutaneous fat.

Use of a translucent surgical drape will facilitate monitoring of respiratory function

> PLoS One. 2020 Mar 3;15(3):e0219722. doi: 10.1371/journal.pone.0219722. eCollection 2020.

Pre-warming before general anesthesia with isoflurane delays the onset of hypothermia in rats

Maxime Rufiange ^{1 2}, Vivian S Y Leung ^{1 2}, Keith Simpson ³, Daniel S J Pang ^{1 2}

Prevention of the central hypothermia mandatory Regulation of body temperature from 30 to 45 ° C

> Med Hypotheses. 2019 Dec;133:109387. doi: 10.1016/j.mehy.2019.109387. Epub 2019 Aug 30.

Hypothermia-rewarming: A Double-edged sword?

Yi Hou¹, Yuanyuan Qiao², Ming Xiong³, Dajin Zhang⁴, Wei Rao⁵, Chenghe Shi⁶

- Body temperature
- Pulse-oximetry
 - BodSPO2 values <95% indicates the onset of mild hypoxia and a reduction to 90% requires immediate actiony temperature
 - If the anesthetic plane is too light, heart rate may increase and if the anesthetic plane is too deep, heart rate drops and can be erratic

Blood pressure

- Capnography
 - High ETCO2 or hypercapnia indicates hypoventilation, which may be caused by deep anesthetic plane
 - Low ETCO2 or hypocapnia indicates hyperventilation, which may be from reduced cardiac output, blood pressure, decrease in pulmonary perfusion

Espèces	Poids (kg)	Fréquence ventilatoire (c/min)	Volume courant (ml)	Fréquence cardiaque (b/min)	Volume sanguin (ml/kg)	Température centrale (°C)
Souris	0.03	180	0.15	550-600	75	37.4
Hamster	0.08	80	0.8	350	72	37.4
Gerbille	0.09	90	0.9	260-600	75	39
Rat	0.2	90	1.6	350	58	38
Cobaye	0.5	120	205	155	75	38
Chat	3	26	30	150	85	38.6
Lapin	3	50	20	220	70	38
Primate	10	35	50	150	75	39
Chien	15	25	150	100	80	38.3
Porc	20	18	420	80	70	39
Mouton	45	20	300	75	60	39.1
Chèvre	50	20	325	80	70	39.4
Porc	200	12	3800	9	65	39

Factors affecting anesthesia

Consider these factors during the anesthesia planning and implementation to ensure optimal research results and preserve research reproducibility

Strain	Sex	A
MAC and convulsivity threshold differed among strains	Physiological differences may change the anesthetic potency	MAC d wit

The consideration of these factors also allows the modern mouse researcher to move towards a more tailored anesthesia, similar to current human anesthesia trends

Strain

Differences in the genetic basis of anesthetic action in mice

Consistent with results from studies in drosophila and Caenorhabditis elegans

Indicate several genetic influences on anesthetic action

Strain	Isoflurane
Inbred mice	
129/J	1.31 ± 0.13 (24)
129/SvJ	1.40 ± 0.12 (16)
129/Olahsd	1.37 ± 0.16 (16)
C57BL6/J	1.30 ± 0.11 (24)
C57BL6/Nhsd	1.33 ± 0.08 (24)
DBA/2J	1.60 ± 0.20 (13)
Cast/Ei	$1.43 \pm 0.31(7)$
Spret/Ei	1.77 ± 0.17 (6)
Hybrid mice	
B6129F2/J	1.33 ± 0.16 (24)
B6129F2/J	1.67 ± 0.14 (6)
(Tail tip clipped)	
Outbred mice	
CD-1	1.34 ± 0.16 (23)

Sex

- 79% of animal studies published in Pain over the preceding 10 years included male subjects only, 8% of studies on females only, and another 4% explicitly designed to test for sex differences
- On average, blood pressure, height and weight differ by sex and these differences may affect response to a pain stimulus, as well as responses to pain treatment
- Difference in body fat percentage (adult males > adult females) can affect potency and/or duration of some anesthetic and analgesic agents

Age

MAC for volatile inhalant anesthesia decreases with age in humans and animals, including mice

Minimum alveolar concentration (MAC) was 2.3% in 10-day-old mice

Duration and operator skill

In cardiology research, prolonged anesthesia (isoflurane or sevoflurane) affects blood vessel contractility for several days after the anesthetic event

Anesthesia in neonates

Propensity to develop hypothermia and hypoglycemia

- Increased blood-brain barrier permeability
- Higher body-water content

Less mature hepatic system

Lower albumin concentrations

Less mature pulmonary system

Up to 7 days (poikilothermic for up to 7 days) and no longer than 30 minutes

Small body mass = surface cooling quickly decreases their body temperature

Placed on top of a latex sleeve in an ice bath and held in position

- Bradycardia, hypoventilation or apnea and hypoxemia are all seen in the first 5-15 minutes of neonatal hypothermia anesthesia
- Provide gradual rewarming, because rapid warming, such as with a heating lamp, can lead to tissue damage

50

45

35

30

25

20

15

10

an RR (breaths per min)

Me

- Induction chamber at 2 L/min of 100% O2 containing either 5% isoflurane or 8% sevoflurane
- Mask with 0.5L/min and 3% isoflurane or 5% sevoflurane
- Shorter recovery time

Time (min) after anesthesia induction

Anesthesia in stereotaxic procedures

Absent paw withdrawal reflex before placing ear bars

Coating the ear bars tips with lidocaine

Removing the ear bars at the end can deepen the anesthesia state

Isoflurane, 1-chloro-2,2,2-trifluoroethyl difluoromethyl, Forane[®], Aerrane[®], Isorrane[®], lsovet[®]

WHMIS 1988

D2B: Poisonous and infectious material: other toxic effects Chronic toxicity; Specific target organ toxicity - single exposure

WHMIS 2015

Eye irritation (Category 2B)

Specific target organ toxicity - single exposure (Category 3): central nervous system Specific target organ toxicity - repeated exposure, Inhalation (Category 2): cardio- vascular system and

central nervous system

SIGMA-ALDRICH

Skin protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

The selected protective gloves have to satisfy the specifications of EU Directive 89/686/EEC and the standard EN 374 derived from it.

Body Protection

Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

sigma-aldrich.com

SAFETY DATA SHEET

according to Regulation (EC) No. 1907/2006 Version 5.4 Revision Date 02.06.2015 Print Date 25.04.2017 GENERIC EU MSDS - NO COUNTRY SPECIFIC DATA - NO OEL DATA

Early Postnatal Exposure to Isoflurane Disrupts Oligodendrocyte Development and Myelin Formation in the Mouse Hippocampus.

Qun Li, Ph.D., Reilley P. Mathena, B.S., Jing Xu, M.D., O'Rukevwe N. Eregha, B.A., Jieqiong Wen, B.S., and Cyrus D. Mintz, M.D., Ph.D.

Conclusions:

Early postnatal exposure to isoflurane in mice causes lasting disruptions of oligodendrocyte development in the hippocampus via actions on the mTOR pathway.

Early postnatal exposure to isoflurane causes cognitive deficits and disrupts development of newborn hippocampal neurons via activation of the mTOR pathway

Eunchai Kang, Investigation, Methodology, Supervision, Writing – original draft, #1,2 Danye Jiang, Investigation, Writing - original draft,#3 Yun Kyoung Ryu, Conceptualization, Investigation, Methodology, Supervision,#3 Sanghee Lim, Investigation,³ Minhye Kwak, Investigation,³ Christy D. Gray, Investigation, Writing – original draft,³ Michael Xu, Investigation, Writing – review & editing,³ Jun H. Choi, Investigation,^{1,¶} Sue Junn, Investigation,¹ Jieun Kim, Investigation,¹ Jing Xu, Writing – review & editing,³ Michele Schaefer, Writing – original draft, Writing – review & editing,³ Roger A. Johns, Conceptualization, Resources, Supervision, Writing – review & editing,³ Hongjun Song, Conceptualization, Methodology, Resources, Supervision, Writing – review & editing, 1,2,4 Guo-Li Ming, Conceptualization, Methodology, Resources, 1,2,4 and C. David Mintz, Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Visualization, Writing original draft, Writing – review & editing^{3,*}

MESURES **POUR LA PROTECTION ET L'AMELIORATION DU BIEN-ÊTRE ANIMAL**

JANVIER 2020

L'amélioration du bien être animal et la lutte contre la maltraitance animale sont des priorités du Gouvernement. L'animal - d'élevage ou de compagnie – est un être sensible. Le présent plan gouvernemental vient compléter et renforcer les mesures déjà en vigueur.

la perte de l'équilibre, et des réflexes posturaux = stade d'anesthésie débutante

le nystagmus (inconstant) = passage à l'anesthésie chirurgicale (ou au contraire début du réveil)

- l'insensibilité au pincement des oreilles, de la queue et des espaces interdigités = anesthésie chirurgicale (début)

- l'abolition du réflexe d'extension du membre au pincement de la corde du jarret (lapin) ou à la percussion du ligament patellaire chez les grands animaux (réflexe rotulien) = anesthésie chirurgicale correcte

- la disparition du réflexe oculo-palpébral. Attention, il est difficile à tester et peu fiable chez les petites espèces - la persistance du réflexe cornéen = stade toxique - la surveillance de la fréquence de la respiration (danger si chute de 40% = stade toxique; si accélération = réveil ou excès de CO₂ veineux si anesthésie volatile)

la couleur des muqueuses (blanches ou danger de syncope et d'apnée)

la température centrale (risque d'hypothermie)

No mandatory guidelines, only issued recommandations

	origine	Valeur moyenne pondérée	Valeur au cours d'une courte exposition
France	Recommandé par la Comission Française d'Anesthésiologie et transcrite par une circulaire du Ministère de la Santé DGS/3A/667 bis du 10 octobre 1985	2 ppm à proximité du patient pendant la phase d'entretien de l'anesthésie	-
Allemagne	Limite règlementaire depuis 1994	10 ppm	-
Angleterre	Seuil limite depuis 1996 établi par COSHH (The Control of Substances Hazardous to Health Regulation)	50 ppm	_
Danemark	Valeur limite depuis 1988	2 ppm	-
Finlande		10 ppm	-
Norvège	Valeur limite depuis 1991	2 ppm	-
Polande	The Expert Group for Chemical Hazards	4 ppm	-
Quebec	Valeur limite depuis 1995	75 ppm	-
Suède	Valeur limite depuis 1990	10 ppm	-
Suisse	Valeur limite depuis 1997	10 ppm sur 8 heures	20 ppm sur une durée 4 fois 30 minutes par période de travail
	Nationnal Institute of Occupationnal Safety and Health (NIOSH), organisme officiel	2 ppm ou 0,5ppm en présence de N2O pour un prélèvement d'une heure	_
USA	American Conference of Governmental Industrial Hygiene (ACGIH), association de droit privé	75 ppm	< 3 fois la valeur moyenne et pas plus 30 minutes sur une journée de travail

Circulaire DGS/3A/667 bis du 10 Octobre 1985 relative à la distribution des gaz à usage médical et à la création d'une commission locale de surveillance de cette distribution.

IV – Propositions concernant la pollution par les gaz et vapeur anesthésiques

Proposition $n^{\circ} l$ – Les salles où se font les anesthésies (y compris l'induction et le réveil) doivent être équipées de dispositifs assurant l'évacuation des gaz et vapeurs anesthésiques. Ces dispositifs doivent permettre, durant la phase d'entretien de l'anesthésie, d'abaisser à proximité du malade et du personnel les concentrations :

- à moins de 25 ppm pour le protoxyde d'azote ;
- à moins de 2 ppm pour les halogènes.

Proposition n° 2 – La commission locale de surveillance doit s'assurer de la réalisation des mesures prévues ci-dessus, en liaison avec le comité d'hygiène et de sécurité et des conditions de travail (CHSCT) de l'établissement et conformément aux dispositions de l'article R. 232-12 du code du travail (Assainissement, gaz toxiques).

- Active charcoal filters are used for the isoflurane adsorption
- Has to be replaced once saturated, and discard in the dasri bin
- HEPA filters can be used to ensure no contamination by any biological agent

Merci de votre attention

Équipements pour la recherche scientifique et préclinique

